
Porting an MPEG-2 Decoder to the Cell Architecture 
 

Troy Brant, Jonathan Clark, Brian Davidson, Nick Merryman 
Advisor: David Bader 

 
College of Computing 

Georgia Institute of Technology 
Atlanta, GA 30332-0250 

troy.brant@gatech.edu, antimatter3009@gmail.com, gtg884r@mail.gatech.edu, 
nick.merryman@gmail.com 

 
 

ABSTRACT 
In this paper, a method to port an existing MPEG-2 
decoder to the Cell architecture is presented. The 
proposed method consists of selecting an existing 
MPEG-2 implementation, parallelizing the MPEG-2 
video stream at the slice level, and changing the 
code base to take advantage of the nine total 
processors on the Cell chip. 

1. INTRODUCTION 
The Cell architecture consists of one Power 
Processor Element (PPE) and eight Synergistic 
Processor Elements (SPEs). These processors give 
the Cell the ability to execute up to nine threads of 
instructions simultaneously. The PPE is a 4 GHz, 
64-bit IBM PowerPC processor that is primarily 
used to coordinate the work done on the SPEs. Each 
SPE is a 4GHz processor that generally performs the 
brunt of the work for any given program run on the 
Cell. 

2. MPEG-2 
MPEG-2 is video compression format used for many 
types of video media, including DVDs, Internet 
video, and digital cable [1]. MPEG-2 is an extension 
of the MPEG-1 specification and can handle both 
progressive and interlaced videos. 
 
The MPEG-2 standard instructs how to both encode 
and decode videos, but we will be focusing solely on 
decoding in this paper. 

2.1 Format 
An MPEG-2 video file consists of an hierarchy of 
layers [2]. The highest layer is the sequence layer, 
and there is one sequence per video file. A sequence 
consists of one or more groups of pictures, each of 

which contain one or more frames. Each frame is 
then broken down into horizontal slices, where each 
slice contains multiple macroblocks, which are 
themselves made up of 8 x 8 pixel blocks. 

2.2 Parallelization 
To optimize an MPEG-2 library for Cell, the 
decoding process needs to be parallelized in order to 
take advantage of the multiple SPEs on the Cell 
processor. 
 
There are several layers of MPEG-2 where you 
could implement parallelization, including the 
groups of pictures (GOP) layer, the frame layer, the 
slice layer, the macroblock layer, and the block 
layer. The GOP layer would not be a good choice for 
parallelization because small videos will probably 
only have a couple GOPs and would not take 
advantage of all the SPEs on the Cell. There is no 
way to parallelize at the frame layer because most 
frames require sequential decoding. Again, there is 
no way to parallelize at the macroblock layer 
because macroblock decoding depends on previous 
macroblocks for motion compensation. The block 
level would not be a feasible option because of the 
amount of time that would be spent communicating 
between the PPE and SPEs would far outweigh any 
benefits gained from parallelization. 
 
The slice layer is the best choice for parallelization 
in the MPEG-2 decoder because each slice in a 
frame can be decoded independently, unlike almost 
every other layer. The slice layer has also been the 
choice of parallelization in several other research 
papers, including [3], [4], and [5]. 

2.3 Libraries 
There are many libraries available that implement 
MPEG-2 on several platforms. ffmpeg is the most 



popular implementation and is used in a wide variety 
of Linux media players. libmpeg2 is also widely 
used in Linux media players and has performance 
comparable to ffmpeg. We were largely 
unsuccessful in attempting to port both of these 
libraries to the Cell. The problem we ran into with 
each of the libraries was that they were highly 
optimized for performance, and thus the code was 
highly unreadable. With the limited amount of time 
we had to finish the research project, we determined 
our time would be better spent finding a more 
understandable code base to work from. 
 
For our implementation library, we chose 
mpeg2play. The mpeg2play library is an optimized 
version of a prototype MPEG-2 library. The 
prototype library was written as an educational tool 
to show developers implementing MPEG-2 how the 
standard was supposed to work. This library is a 
great choice to port to the Cell because the code is 
commented extensively and can be easily 
restructured, unlike the other highly optimized 
MPEG-2 libraries. 

3. PORTING MPEG-2 TO CELL 
The mpeg2play library is single threaded and needed 
massive restructuring to take advantage of the Cell’s 
multi-core capabilities.  

3.1 Slice Parallelization 
The first step to porting the library to Cell was to 
change the logical structure of the program in order 
to support parallelization. The mpeg2play decoder 
originally worked by loading a 2KB chunk of a file 
into a buffer, and advancing through the bitstream 
and filling back up the buffer as necessary until the 
end of the file was reached. For parallelization, 
however, we needed to split the bitstream into slice-
sized chunks and pass them to the SPEs. So, we 
changed the program so that instead of just 
advancing through the bitstream and working on 
whatever data is there, the program works on the 
bitstream like normal until a slice start code is found. 
Then, the bitstream is stored in a buffer until the 
next slice start code is found. At that point, the 
bitstream is set to point to the beginning of the slice 
buffer, and the decoding function getMBs() works 
on the data in the slice buffer. When it’s done, the 
original bitstream with the file data is restored, and 
the process continues until all slices in a frame are 
decoded. This change was necessary for 
parallelization because the PPE on the Cell will store 

the slices in buffers and send them to SPE for 
decoding. 

3.2 SPE Support 
The next step was to convert the code to compile on 
the Cell architecture by splitting code into portions 
that will run on the PPE and portions that will run on 
the SPE. The general work-flow is that the PPE 
splits the bitstream into slices, sends the slices to the 
SPEs, and the SPEs decode the slices and return the 
result to the PPE. To achieve this, the PPE needs to 
DMA transfer to the SPE a structure that contains 
the address of the slice buffer to decode, all the 
global variables the SPE needs to perform the 
decoding, and the destination addresses for the 
decoded blocks. The SPE needs to have all the code 
required to perform the decoding. Thus, we added a 
global_data structure that contains the global 
information that needs to be passed from the PPE to 
the SPE, and we also added an “spu” directory to the 
code base that contains all the files required to 
perform the decoding of a slice. After making these 
changes, we integrated the mpeg2play Makefile with 
the generic Cell Makefile, and compiled the program 
for successfully for the Cell. 

3.3 Work Queue 
Now we are able to send the data to the SPE for 
decoding purposes, but at this stage we can only 
offload the work to one SPE and have to wait for 
that one to finish. To fully optimize the decoder, we 
would need a way to dispatch SPEs to do work and 
wait for them to finish and give them more work.   
 
This led us to the development of the Work Queue / 
Wait Queue Synchronization System. The PPU calls 
into this system to send a slice decode request to an 
available SPE and doesn’t worry about it being 
handled and instead just moves to dispatch the next 
decode request. When all available SPEs have been 
assigned work, the remaining requests are pushed 
onto the end of the Work Queue and are available 
when an SPE is freed up after decoding its slice. 
When an SPE gets done with their work, it sends 
back its response in a delayed verification fashion 
and contacts the PPE for more work. The sending of 
the work in a delayed verification fashion is a form 
of double buffering. We tell the processor to start 
copying the memory back, but we don’t verify it was 
actually sent until we are starting two decoding 
iterations from now. This allows the DMA transfer 
to take place while the next slice is being decoded. 
 



When the SPE is done with its work and there are no 
more requests on the Work Queue, the SPE is put on 
the Wait Queue until more work comes or until the 
PPE signals we are done with the frame. Once the 
entire frame is decoded, the PPE sends a 
synchronization signal to the SPEs. This allows all 
the SPEs to verify that all of their delayed 
verification responses have been written back, and 
we are then able to move on to the next frame. 

3.4 High-Resolution Video Support 
The main challenge with using an SPE to decode 
MPEG-2 video is determining which portions of the 
reference frame to keep in the local storage of the 
SPE at any given time for the decoding of P and B 
frames. For these frames, the motion vectors choose 
nearby pixels from the reference frames on which to 
base the decoding of the current frame. These 
motion vectors can select a reference pixel between 
0 and 15 pixels away in any direction – this means 
for a given slice, you must have 46 horizontal pixel 
rows from the reference frames in the local storage 
of an SPE. 
 
For high-resolution videos, this is far too much data 
to be held in local storage all at once. The strategy 
used to overcome this problem is to logically divide 
the decoding of each slice on an SPE into chunks 
such that the leftmost part of the slice is decoded, 
then additional reference frame information is 
transferred to the SPE before continuing to the next 
logical chunk. Double buffering of data is 
implemented within a slice on this chunk-level. 

4. Performance 
In general, we found the Cell implementation of the 
mpeg2play library to be 4 times faster than the 
original x86 version. The Cell speedup is essential 
for larger videos that take more time to decode each 
frame and may cause noticeable skipping in the 
single-threaded version of mpeg2play. 
 
[3] presents a slice optimization for decoding B 
frames in the MPEG-2 stream without synchronizing 
after each frame, but we did not implement the 
optimization in our system. Our results are 
reasonable considering that synchronization is 
required after decoding each frame. 
 
 
 
 
 

Name Resolution Frames Pattern 
short.mpg 352 x 240 7 IBBPBB 
dein_cact 704 x 480 250 IPPPPPPPPPPPPPP 

Table 1: Test videos used in performance analysis 
 

Table 1 shows the two primary videos we used to 
test the performance of our system. The frames in 
the dein_cact video are two times as large as the 
short.mpg video, thus they also contain roughly two 
times as many slices. 
 

Cell Performance

0

100

200

300

400

500

600

Base 1a 1b 2 3 4 5 6

Number SPUs

F
ra

m
es

/S
ec

 

short.mpg dein_cact

 
Figure 1: Frames per second of Cell version 

compared to single threaded version 
 
In figure 1, we performed a comparison of our Cell 
implementation to the single-threaded MPEG-2 
implementation. The ‘Base’ label on the x-axis 
represents the single-threaded implementation. ‘1a’ 
labels the test version of our Cell implementation 
that starts and stops a single SPE each time a slice 
needs to be decoded. ‘1b’ labels our final Cell 
implementation that uses one SPU that is started 
once and receives slices from the PPE via 
mailboxing. 
 
In figure 1, the initial decrease in performance when 
one SPE is enabled is expected. Enabling only one 
SPE is equivalent to running the program as a single 
thread, but with the additional overhead of 
performing DMA transfers for every slice in the 
video. 
 
Our results show a general linear improvement in 
performance as more SPEs are added. This is a great 
property of the system because as more SPEs are fit 
onto future Cell processors, our system’s 
performance will scale linearly with the number of 
SPEs enabled during decoding. 



 

Cell Speedup

0

1

2

3

4

Base 1a 1b 2 3 4 5 6

Number SPUs

S
p
ee

d
u
p
_

short.mpg dein_cact

 
Figure 2: Speedup of Cell version compared to 

single threaded version 
 

Figure 2 shows the speedup of the Cell 
implementation over the single threaded version of 
mpeg2play. As more SPEs are enabled, the 
dein_cact video has a more impressive speedup than 
the short.mpg video. Each frame in the dein_cact 
video is two times as large as a frame in the 
short.mpg video, and thus it has two times as many 
slices as a frame in the short.mpg video. This 
increase in the number of slices means that the SPEs 
can continuously do more work before needing to be 
synchronized at the end of a frame, and so the 
dein_cact video takes advantage of the 
parallelization of the system more than the 
short.mpg video does. 

5. CONCLUSION 
Our research has produced an MPEG-2 decoder 
optimized for the Cell architecture. We implemented 
a work queue on the PPE that contained the slice 
chunks to be passed to the next available SPE. This 
work queue idea may help to inspire similar designs 
in future projects porting libraries to the Cell 
processor. The decoder we developed isn’t perfect 
and doesn’t work with every type of MPEG-2 video, 
but it works for most videos and provides a high 
level of speedup over single-threaded MPEG-2 
libraries. 

5.1 Future Work 
There are several optimizations and improvements 
that could be made to the current MPEG-2 Cell 
decoder. For optimization, each SPE can execute 
vectorized code using SIMD instructions. SIMD 
instructions give you parallelization at the 

instruction level, allowing you to execute four 
instructions per cycle instead of one. 
 
Another optimization is providing double buffering, 
pre-caching, for the DMA transfers needed in a slice 
decode request. Our attempts at adding double 
buffering were unsuccessful due to memory 
constraints. There is a tradeoff, however, in that if 
double buffering is implemented, you wouldn’t be 
able to transfer as much of the slice over to the SPE 
for decoding and will need more DMA transfers than 
our current single-buffered solution. 
 
The Cell decoder can also be made more robust by 
handling system stream MPEG-2 videos, which use 
a different bitstream format than typical MPEG-2 
videos. Also, the decoder needs to handle videos that 
only have a single slice per frame, a video type that 
we came across experimentally. 

6. CONTRIBUTIONS 
This research project was conducted by three 
undergraduates (Troy Brant, Jonathan Clark, and 
Brian Davidson) and one graduate student (Nick 
Merryman). Everyone in the group performed the 
following tasks: 
 

• Learned Cell programming techniques by 
implementing the RC5 compression 
algorithm on Cell 

• Researched the MPEG-2 standard 
• Researched MPEG-2 implementations, such 

as ffmpeg, libmpeg2, and mpeg2play 
• Cross-compiled the various MPEG-2 

implementations for Cell 
 
Our individual contributions to the project are listed 
as follows: 

6.1 Troy Brant 
Troy was responsible for making the initial changes 
to the mpeg2play library detailed in section 3.1 of 
this document. In particular, he altered the library so 
that instead of just progressing sequentially through 
the MPEG-2 bitstream, the program broke the 
bitstream into slice buffers that were decoded 
individually. He was also contributed to the overall 
design and development of the MPEG-2 Cell 
implementation. 



6.2 Jonathan Clark 
Jonathan was responsible for getting our code to 
write PPM formatted images. These were necessary 
for testing as they allowed us to run the code on the 
simulator and check the output. We could also check 
the output more closely with static images rather 
than a playing video. Additionally, Jonathan helped 
with the initial move of the code to the Cell, 
including writing the data structure necessary to pass 
information between the PPU and the SPUs. Finally, 
he worked on trying to get the IDCT portion of the 
code to use Altivec, but it never ended up working. 

6.3 Brian Davidson 
Brian was responsible for the development of the 
Work Queue / Wait Queue Synchronization System 
and the integration of this system with the necessary 
main memory detached slice level decoding efforts 
doing basically the canonical example of 
parallelization by dealing with starting up some SPE 
threads dispatching the work and collecting the 
results.  Additionally, Brian made an attempt at 
further optimization by trying to implement a pre-
caching double buffering schema when used in 
conjunction would mitigate the delay of DMA 
transfers, as the last response memory transfer and 
the next request memory transfer would happen in 
the background while the SPE was busy perform the 
current request, but getting successful 
implementation was derailed by the fact that each 
SPE has only a 256K local store, which corresponds 
to a little less space than needed to hold the current 
slice and pre-cache the next one, thus we were 
unable to allocate enough memory to do the work. 

6.4 Nick Merryman 
Nick was responsible for all aspects of decoding an 
individual slice on a single SPE. The code he 
developed was designed to run in parallel on as 
many SPEs are available. This included all data 
transfers to and from the SPE and modifications to 
the decoding structure necessary due to the limited 
local memory space of each SPE. He also 
implemented double buffering of memory on the 
SPEs. 

7. REFERNCES 
[1] P. N. Tudor. MPEG-2 Video Compression. In 

Electronics & Communication Engineering 
Journal, Volume 7, Issue 6, December 1995, 
pages 257 – 264. 

[2] ISO/IEC 13818-2. MPEG-2 video coding 
standard, March 1995. 

[3] A. Bilas, J. Fritts, and J. P. Singh. Real-Time 
Parallel MPEG-2 Decoding in Software. 
Proceedings of the 11th International Parallel 
Processing Symposium, 1997. 

[4] E. Iwata and K. Olukotun. Exploiting Coarse-
Grain Parallelism in the MPEG-2 Algorithm. In 
Proceedings of the International Conference on 
Supercomputing (ICS), 1999. 

[5] A. Bala, D. Shah, W. Feng, D. K. Panda. 
Experiences with Software MPEG-2 Video 
Decompression on an SMP PC. In Proceedings 
of the 1998 International Conference on Parallel 
Processing Workshops (ICPPW), 1998. 

 

 


